High yields of hydrogen production from methanol steam reforming with a cross-U type reactor

نویسندگان

  • Shubin Zhang
  • Yufeng Zhang
  • Junyu Chen
  • Xuelin Zhang
  • Xiaowei Liu
چکیده

This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen production by steam reforming of dimethyle ether over Cu/ZnO/Al2O3 and H-ZSM-5 catalysts: An experimental and modeling study

Hydrogen was produced by steam reforming of dimethyl ether (DME) using a physical mixture of commercial HZSM-5 zeolite (for DME hydrolyzing) and Cu/ZnO/Al2O3 (for methanol steam reforming) as a catalyst in a fixed bed reactor. The experiments were performed at atmospheric pressure and in a temperature range from 270 to 310 °C. The effects of feed temperature and gas hourly space velocity (GHSV)...

متن کامل

Cyclic Regeneration of Cu/ZnO/Al2O3 Nano Crystalline Catalyst of Methanol Steam Reforming for Hydrogen Production in a Micro-Fixed-Bed Reactor

Hydrogen can be produced for fuel cell applications by using methanol steam reforming reaction. In this article, a method was developed for regeneration of accelerated deactivated methanol-steam-reforming catalyst. Successive deactivation–regeneration cycles were studied in a 250 hours test for the first time including 6 regeneration cycles. It is shown that regeneration of the catalyst in ...

متن کامل

Effect of Pt on Zn-Free Cu-Al Catalysts for Methanol Steam Reforming to Produce Hydrogen

Steam reforming of methanol can be considered as an attractive reaction aiming at hydrogen production for PEM fuel cells. Although Cu/Al-contained catalysts are considerably evaluated in this reaction, further evaluation is essential to evaluate the impact of some promoters like Pt in order to find a comprehensively optimized catalyst. Pt promoter is employed with different methods in this ...

متن کامل

Steam Reforming Integrated with Oxidation of Methanol in a Micro-Channel Reactor with Different Micro-Baffle Shapes

A micro-channel heat exchanger reactor with different micro-baffle shapes has been studied numerically. Governing equations were solved base on the finite volume method with FLUENT software. In upper section, oxidation reaction of methanol was occurred and in lower section, steam reforming of methanol was done. Two sections were separated with solid part which played as heat exchanger and trans...

متن کامل

Reforming Integrated with Oxidation in Micro-Heat Exchanger Reactor with Circular Micro-Channels

Steam reforming integrated with oxidation of methanol was considered with numerical simulation. The parallel micro-channels with circular cross sections were used. Because when the catalytic deposited inside the rectangular micro-channels, it fills up the edges. Hence, the approximation of a cylindrical channel is appropriate. Effect of this changing in cross section was considered and results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017